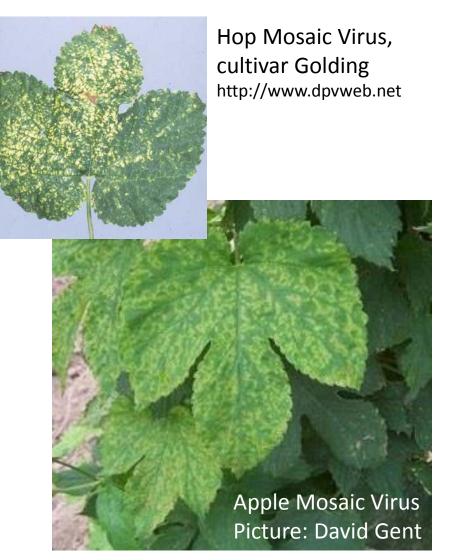
Healthy hop planting stock for Wisconsin

Ruth Genger, Brian Hudelson, Sean Toporek and Amanda Gevens Department of Plant Pathology University of Wisconsin-Madison

Hop planting stock

- Rhizomes
- Plantlets


Picture: The Hop Yard via amazon.com

 Vegetative propagation: pathogens in source plant are also present in propagated plants

Diseases transmitted in hop planting stock

- Carlaviruses
 - Hop Mosaic Virus (HpMV)
 - Hop Latent Virus (HpLV)
 - American Hop Latent Virus (AHLV)
- Apple Mosaic Virus
- Arabis Mosaic Virus
- Hop Stunt Viroid
- Hop Latent Viroid
- Hop Downy Mildew
- Verticillium wilt

Hop Mosaic Virus

- Many cultivars are tolerant of infection
- Goldings and Chinook are highly sensitive
 - Chinook: 62% yield loss
- Transmission:
 - Hop-damson aphid, potato aphid, green peach aphid
 - Mechanical and plant contact
- Symptoms:
 - Chlorosis (yellowing), mottling and distortion of leaves
 - Stunting, shortened internodes

Apple Mosaic Virus

- Previously "Prunus necrotic ringspot virus"
- Transmission:
 - Mechanical (in plant sap)
 - Plant contact, root grafting
- Symptoms
 - Cultivar and strain dependent
 - Expressed in cooler weather
 - Chlorotic (yellowed) or necrotic (dead) rings and arcs
 - Stunting, shortened internodes & sidearms
 - Yield loss (up to 30%)
 - Reduced alpha acids

Picture: David Gent

Hop Stunt Viroid

- Mechanical transmission
- Stunting; yellowing/speckling and curling of leaves
- Possible association with Fusarium canker
- Yield and quality effects
 - Yield losses of 50-80%(Willamette, Glacier)
 - Brewing acid levels 50-70% lower
 - Shift in ratio of α : β -acids

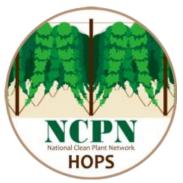
Photos: David Gent, USDA Agricultural Research Service, Bugwood.org

Hop Latent Viroid

- Mechanical transmission
- Chlorosis, slow growth, fewer laterals
- Yield and quality effects
 - cultivar-dependent; many cultivars appear tolerant
 - Omega cone yield down 27%, α-acids down 31%, β-acids higher

Photos: www.plantmanagementnetwork.org

Managing diseases spread in planting stock

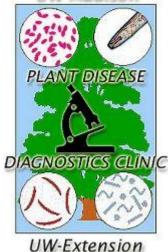

- Plant clean stock
- Sanitation
 - Work in diseased yards
 last
 - Sterilize tools (soak in 5-10% bleach for several minutes. Rinse with water.)
- Destroy infected plants

Hop stunt viroid in cultivar Glacier. Picture: Ken Eastwell.

Sources of clean stock

- Clean Plant Center of the Northwest
 - Distributes material in winter (potted plants) and summer (bine cuttings)
 - Subscribe to email list to request material
- USDA National Clonal Germplasm Repository
 - Maintains cultivated and wild hop germplasm
 - Material distributed for research and education
 - Online request form
- Both distribute only small quantities
- No certification system to ensure pathogenfree stock from commercial suppliers

USDA-NCGR expedition in 2002 to collect native US hops


University of Wisconsin Clean Hops Program

- Build cultivar collection as local source of clean planting stock
- Develop capacity for pathogen eradication from hop clones
- Offer pathogen testing services for hop samples

UW-Madison

Hop cultivar collection at UW-Madison

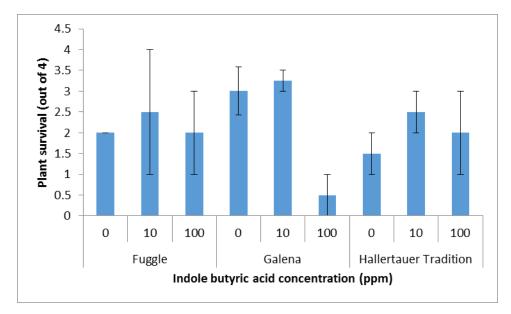
Cultivar	Source	Greenhouse	Tissue culture
Cascade	USDA-NCGR	Υ	Y
Fuggle Tetraploid	USDA-NCGR Y		Υ
Hallertauer Gold	USDA-NCGR		Y
Hallertauer Tradition	USDA-NCGR	Υ	Y
Galena	USDA-NCGR	Y	Y
Mt. Hood	USDA-NCGR	Υ	Y
Nugget	USDA-NCGR	Y	Y
Perle	NCPN-Hops	Υ	
Saazer 38	USDA-NCGR	Y	Y
Tahoma	NCPN-Hops	Υ	
Willamette	USDA-NCGR	Y	Y
Yakima Gold	NCPN-Hops	У	Υ

Plans for hop cultivar collection

- Pilot scale plant distribution in 2016 as part of cultivar evaluation (as in 2015)
- Propagate plantlets for distribution to growers
 - First distribution planned for spring 2017
 - Request using online forms (to be developed)
 - Capacity is limited so plant numbers will be small
- Improve greenhouse management
 - Trellising
 - Reduce supplemental lighting?

Greenhouse propagation

- Single node bine cuttings with ~1 inch stem to either side
- Apply rooting hormone to lower end
 - 10 ppm indole butyric acid/boric acid (IBA/BA) solution, soak for
 2 minutes
 - Commercial powders and gels are easy-to-apply alternatives
- Insert into moist potting media so that nodes are barely covered.
- Cover with ventilated plastic dome. Avoid direct sunlight.
- Water gently. Re-cover nodes with soil if exposed.
- Note that NCPN protocol recommends 1000 ppm IBA/BA solution
- We observed low propagation rates at 1000 ppm IBA/BA for Brewer's Gold, Crystal, Centennial, Cascade, Willamette, Mt. Hood, Fuggle, Galena



Former student Deena Patterson taking hop cuttings

Successful propagation at 4 weeks

Rooting hormones for greenhouse propagation

Excess root production on cultivar Cascade after 1000 ppm IBA treatment

- Cultivars vary in sensitivity to rooting hormones
 - Note reduced propagation success for Galena at 100 ppm IBA
- Highly sensitive cultivars may show excessive root production
- We recommend 10 ppm IBA/BA for most varieties

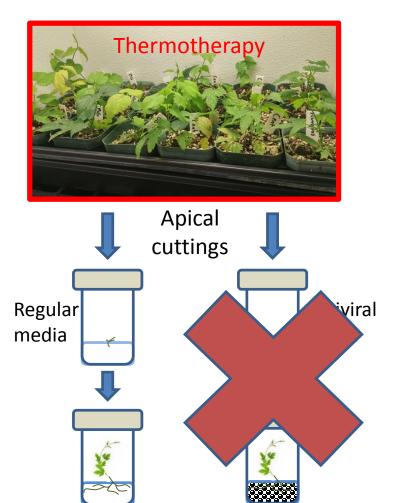
Dormancy treatments

- Does putting potted hop plants through a dormancy period improve regrowth?
 - Nugget, Fuggle, Galena, Yakima Gold (Propagated in spring 2015)
 - Galena, Willamette (Propagated in fall 2015)
 - Dormancy induced by reducing supplemental light in line with natural photoperiod
 - Plants moved to 4 C cooler at end of October
 - Set of plants moved to normal greenhouse conditions weekly for 12 weeks (ending Jan 25)
 - <u>SMALL SAMPLE SIZE</u> results are preliminary

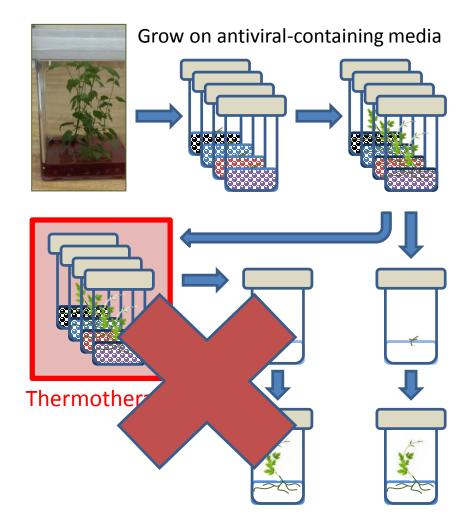
Outcomes of dormancy treatments

- Plants propagated in spring 2015
 - Cold storage as potted plants: 70-100% survival, strong regrowth after up to 10 weeks
 - Cold storage as bare rooted plants (Yakima Gold): 70-100% survival, strong regrowth after up to 9 weeks
- Plants propagated in fall 2015
 - Cold storage as potted plants: survival rate declined after 4 weeks (Willamette) and 7 weeks (Galena)
 - Cold storage as bare rooted plants (Galena): 100% survival after 3 weeks, then 0%

Preliminary recommendations for propagation cycle


- Propagate in spring, maintain in greenhouse till fall
- Cold storage for 3-4 months should not reduce survival of plants with good root system
 - Keep plants moist, but not soaked
 - Storage as bare-rooted plants may be feasible if root system is well grown
- Later propagation: maintain plants in greenhouse through winter

Building pathogen eradication capacity


- Meristem culture after heat treatment USDA-NCGR method
 - Virus less likely to be present in youngest cells
 - Excise cells from growing tip and grow in aseptic culture
- Apical tip culture after growth in antiviral-containing tissue culture media
 - Developed for virus eradication in potato tissue culture
 - Larger cutting increases survival rate
 - Sometimes combined with thermotherapy
 - Easier tissue culture technique, may allow higher capacity due to reduced training needs

Apical tip culture trials

Start with potted plants

Start with tissue cultured plants

Thermotherapy on potted plants

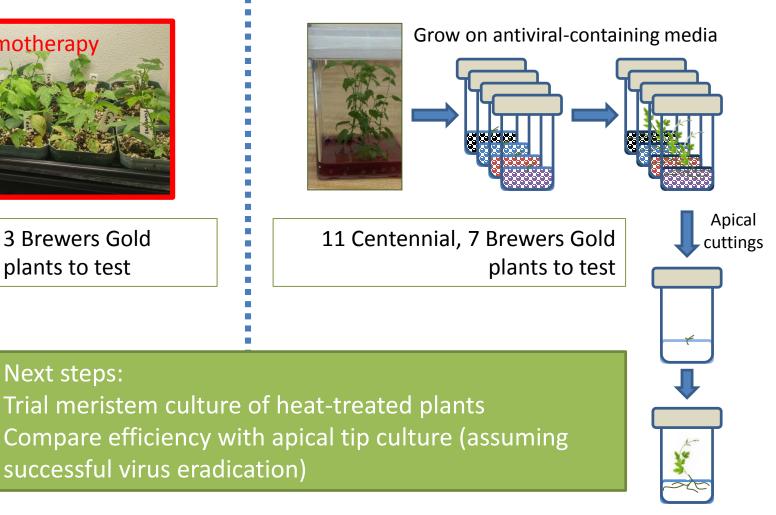
- Brewer's Gold, Centennial
- Infected with:
 - ApMV
 - carlaviruses
- Thermotherapy method following Postman et al (2005):
- 6 week old plants
- 8 hour cycle:
 - 4 hrs lights on, 38 C (100 F)
 - 4 hrs lights off, 30 C (86 F)
- Apical tip culture after 3 weeks

Tissue culture plants on antivirals

- Crystal, Brewer's Gold, Centennial infected with ApMV, carlaviruses
- Antivirals added to "storage" media (low iron)

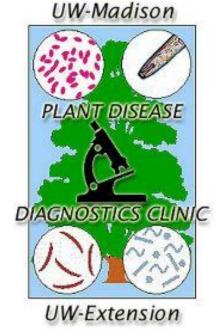
			Plant growth on antivirals	
Ribavirin (15 mg/L)	DHT (50 mg/L)	ASA (1.8 mg/L)	Crystal	Brewer's Gold/ Centennial
+			Stunted	Small, but active growth
+	+		Stunted	Small, but active growth
+		+	Very stunted	Small, but active growth
	+		Small, but active growth	Small, but active growth

Apical tip culture trials


Start with potted plants

Apical cuttings

3 Brewers Gold plants to test


Start with tissue cultured plants

Next steps:

Hop testing services

- Plant Disease Diagnostic Clinic at UW-Madison <u>http://labs.russell.wisc.edu/pddc/</u>
- Testing services for – Carlaviruses
 - Apple mosaic virus
 - Arabis mosaic virus
 - Downy mildew
 - Powdery mildew
 - Verticillium wilt

See brochure or website for details on sample submission and pricing.

UW Clean Hop Program

- Build cultivar collection as local source of clean planting stock
- Develop capacity for pathogen eradication from hop clones
- Offer pathogen testing services for hop samples

QUESTIONS?

