

Trickle Irrigation Primer

Matt Stasiak

Peninsular Agricultural Research Station University of Wisconsin-Madison College of Agriculture and Life Sciences

What Do Plants Need? How Do They Get It?

Water
Light Energy
Air (CO₂ & O₂)
Temperature
Absence of toxins
Nutrients

What Do Plants Need? How Do They Get It?

• Water

- Light Energy
 Air (CO₂ & O₂)
 Temperature
 Absence of toxin
- Nutrients

Precipitation – NE WI 30-32" / year Conservation – Weed control – Mulching Irrigation – Supplemental

Water Cycle

Soil Plant Environmental Management

all contribute to amount of moisture available for plant use

evapotranspiration = transpiration + evaporation

transpiration

trees ____ grass

evaporation

runoff

groundwater recharge

http://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Surface_water_cycle.svg/260px-

Factors Limiting Moisture Supply

• Soil Type Root Distribution • External Stress Wind Humidity Temperature **Precipitation Frequency Irrigation Amount &** Frequency

Soil Type Texture • Sand .05-1 mm • Silt .002-.05 mm • Clay <.002 mm Micro-particles Micropores

Soil Classification

Sand

Soil Type

Water Availability

The role of organic matter

Physical & chemical process bind clay-silt-sand together.

Organic matter and soil structure
Soil flora and fauna activity dependant on organic matter.
Bacteria, fungi, algae, earthworms, beetles, etc.
Fungal threads, gums fats & waxes bind particles together.

Macro-particles and macropores Soil clods & granuales Soil aeration and permeability
Surface vegetation or mulch

Mulching

Mulching

Improvement in surface water infiltration after two season of 'mow and throw'.

Infiltration Rates
(seconds/inch)20072008Control7.413.1MULCH8.95.9

Soil Moisture in Herbicide Strip With and Without Side Delivered Mulch

Root Distribution

Natural Distribution Soil Type Poor distribution in heavy (clay) soils. More extensive in coarse soils. Physical Limitations Hard pans Bedrock Plant Species & Cultivar

External Stress -

Wind
Humidity
Temperature
Precipitation Frequency

External Stress -

Rainfall Distribution – Door County, WI

External Stress -

Rainfall Distribution – Door County, WI

Irrigation Amount & Frequency

	Acre-inches		Actual irrigation required due to inefficiencies		
	Consumptive Use	Irrigation Requirement	Furrow (50% loss)	Sprinkler (25% loss)	
April	0.81		a state in a second		
May	3.33	1.28	2.56	1.71	
June	4.56	3.19	6.38	4.25	
July	5.32	4.97	9.94	6.63	
August	4.39	3.91	7.82	5.21	
Sept	2.07	0.52	1.04	0.69	
October	0.54	and the set of	1 - A - A A		
Total	21.02	13.87	27.74	18.49	

Average consumptive use and net irrigation requirement for orchards in the Willamette Valley in acre-inches. OSU Agricultural Experiment Station Circular 628

'Drip' Advantages & Disadvantages

 Lower water usage 50% less that sprinkler • Lower energy requirement Operating pressure and volume • Efficiency - only what 'crop' needs • Less potential for disease damage • Reduced weed pressure & mowing costs More readily adaptable to hilly terrain

'Drip' Advantages & Disadvantages

- Management, initial investment & operating costs
- Only what 'crop' needs
 - Limited application volume can also be a negative
- No frost protection
- Clogging
 - Particulates, algae, mineral precipitates

Irrigation Amount & Frequency

How much? Species & cultivar Plant age When? Critical periods Timing Where? Placement

Supplemental Irrigation in a Humid Climate

How much?

Differences between species Annual crop – apple – hop Roots spread & depth Down to to 15 ft 3-6' beyond drip line Vine age

How much?

	PLANT AGE						
	1	2	3	4	5	6-20	
CROP	GAL/PLANT/DAY						
Нор	1	2.5	3 - 4?	3 - 4?	3 - 4?	3 - 4?	
Dwarf Apple	1	2	1.5	1.5	2	3	
Grape	1	2	3	5	8	15	
Melons	3		-		-		

How much?

Newly planted vines 7 gallons of water/week. Best to split into 2 applications. 'Rule of Thumb'. Increase volume by 50% each year. (more vigorous, greater increase) Amount needed for vines varies with age.

Distribution System

Emitters

Point source
Historically used in low density crops (1-2 gph)
Inline
T-tape, 'drip-in'
Increased use in high density orchards (0.2-0.3 gph per foot)

Emitter Placement

Need to supply 25% root volume

 Young vines. 1-2 feet from the crown. 3-4 feet of slack at installation. • Mature vines . Maintain distance from crown to avoid root rot. Additional emitters or lines may be required.

1st year

Hops 888 vines/acre

(3.5x14' spacing)

point source emitters Need to supply: 1 gal/vine/day = 7 gal/week

> Using: 1 gph emitter per vine

1st year

Hops 888 vines/acre

(3.5x14' spacing)

point source emitters Need to supply: 1 gal/vine/day = 7 gal/week

> Using: 1 gph emitter per vine

 $\frac{7 \text{ g/wk}}{1 \text{ gph}} = 7 \text{ hr/week}$ 3-4 hrs at 2x per week

In-line emitters 2' spacing, 0.42 gph Hops 888 vines/acre (3.5x14' spacing)

Need to supply: 1 gal/vine/day = 7 gal/week

> Using: 0.735 gph per vine (3.5/2*.42)

In-line emitters 2' spacing, 0.42 gph Hops 888 vines/acre (3.5x14' spacing)

Need to supply: 1 gal/vine/day = 7 gal/week

> Using: 0.735 gph per vine (3.5/2*.42)

 $\frac{7 \text{ g/wk}}{.735 \text{ gph}} = 9.5 \text{ hr/week}$ 5 hrs at 2x per week

When?

Critical PeriodsYoung plantsFlowering

Avoid water logging

In Midwest - typically June through early September

When?

Start early before soil dries

Increase lateral spreadAvoid 'catch up'

Timing Pan evaporation Tensiometers Electrical resistance Dry Soil > Resistance

Water Availability

Scheduling with pan evaporationEvaporation/week2.2 inchesRainfall/week- 0.7 inchesNet water loss/week1.5 inches75- 100% replacement depending on crop

Best in arid climates and coarse (sandy soils)

Monitoring & Scheduling

Tensiometers

Measure energy status of soil water.
'Soil Moisture Tension' (negative pressure).

• Expressed as bars or centibars.

Water Availability

Water Availability Monitor with tensiometers Place 1/3 & 2/3 root depth Sprinkler Begin 40-50 cb Drip Maintain between 10-50 cb

Well, stream or pond?
Particulates

Less likely with well water

pH, dissolved solids & elements

Calcium, Magnesium & Iron

All water sources contain bacteria or elements that

support bacterial growth
Can lead to 'bacterial slime'

Algae from surface water

Filters needed depend on water source

- Coarse screen filters
- Protect pumps from surface water trash
- Fine mesh screen filters

Slotted plastic, perforated/mesh stainless, or nylon

Filters needed depend on water source

Sand filters for surface water - high 'organic' matter

Prevention of Clogging

Table 2. Drip irrigation emitter clogging potential

	Clogging Potential		
Water Criteria	slight	moderate	severe
		– concentration (ppm) –	
Physical			
suspended solids	< 50	50 to 100	> 100
Chemical			
рН	< 7.0	7.0 to 7.5	> 7.5
dissolved solids	< 500	500 to 2,000	> 2,000
manganese	< 0.1	0.1 to 1.5	> 1.5
iron	< 0.1	0.1 to 1.5	> 1.5
hardness, as CaCO ₃	< 150	150 to 300	> 300
Biological			
bacteria (plate count/ml)	< 10,000	10,000 to 50,000	> 50,000

Using Irrigation Water Tests to Predict and Prevent Clogging of Drip Irrigation Systems. Storlie, C. 1995. Rutgers Cooperative Research and Extension Fact Sheet, FS793.

Prevention of Clogging Calcite (scale) formation

Soluble

$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$

Calcium carbonate

Weak acid

Calcium bicarbonate

pH and temperature dependant

Precipitate

Prevention of Clogging

Acid treatment

Citric, phosphoric, sulfuric, hydrochloric Prevention of Mg & Ca scaling, bacterial slime (Fe) – Continuous injection to lower pH to just below 7.0. Scale removal

- 'Slug' injection with pH 3.0-4.0.
- Flush after sitting in line 1-2 hours.
- Chlorine injection
 - Algae, bacterial slime (Fe)
 - Continuous injection to maintain 1-2ppm.

Injectors

Chemical injection to reduce algae and precipitates.
Type – venturi, metering, proportioner
Fertilizer use can be cut by 50%.
All require backflow prevention to protect water source.

Fertigation?

Nitrogen, potassium, magnesium, boron, and zinc can be effectively supplied through fertigation

- Benefits over broadcast fertilizing include:
- Increased nutrient absorption
- Reduced fertilizer need
- Reduced leaching

Reduction in water usage due to the plant's resulting increased root mass's ability to trap and hold water
Precise timing and application rates

Average Yields from Seven Tart Cherry Orchard Floor Systems, 1995-2000

Design Considerations

 Field layout Mainline Supply to fields Submain (header) Within field Laterals To the tree Emitters

Flow Rate

Flow Rate Determination - per acre

	TREE AGE					
	1	2	3	4	5	6-20
CROP	GAL/PLANT/DAY					
Нор	1	2.5	3 - 4?	3 - 4?	3 - 4?	3 - 4?
Dwarf Apple	1	2	1.5	1.5	2	
Grape	1	2	3	5	8	
Melons	3		-		-	

Flow Rate Determination - per acre

Mature

Hop 888 vines/acre (3.5x14' spacing)

Need to supply: 3 gal/vine/day = 21 gal/week Using: 1 gph emitter per vine

888 vines/acre x 1 gph = 888 gallons per hour

Flow Rate Supply

Required main and submain size for various flow rates.

Pipe Flow Rate (gpm)	Minimum Pipe Size (inches)
1.0-4	1/2
8 - 12	1
22 - 30	1 1⁄2
30 - 50	2
70 - 110	3
110 - 190	4
190 - 450	6

Sufficient flow?

888 vines/acre x 1 gph = 888 gallons per hour

> 14.8gal/min. 1 ACRE

7.4gal/min. 1/2 ACRE

Flow Rate Supply

Required main and submain size for various flow rates.

Pipe Flow Rate (gpm)	Minimum Pipe Size (inches)
1.0-4	1/2
8 - 12	1
22 - 30	1 1⁄2
30 - 50	2
70 - 110	3
110 - 190	4
190 - 450	6

Sufficient flow?

888 vines/acre x 1 gph = 888 gallons per hour

> 14.8gal/min. 1 ACRE

7.4gal/min. 1/2 ACRE

Flow Rate Supply

Required main and submain size		
for various flow rates.		

Pipe Flow Rate (gpm)	Minimum Pipe Size (inches)
1.0-4	1/2
8 - 12	1
22 - 30	1 ½
30 - 50	2
70 - 110	3
110 - 190	4
190 - 450	6

Sufficient flow?

888 vines/acre x 1 gph = 888 gallons per hour

> 14.8gal/min. 1 ACRE

7.4gal/min. 1/2 ACRE

Pump requirements

Needs to be sufficient to bring water to the surface and move against gravity and friction.

Combination of-

• Flow rate

Gallons per minute each section to be irrigated. **'Head' - total energy needed supply emitters** Elevation – water source to highest lateral. Friction – supply lines, valves, filters, etc.

Final Thoughts - Design Considerations

Professional Design Engineer

- Water source well, pond, existing pumps, etc.
- Electrical supply voltage, etc.
- Total flow rate
- Vine age & cultivar
- Row and plant spacing
- Field dimensions row lengths
- Terrain
- Automation Chemical injection

Suppliers

Roberts Irrigation Company, Inc. 1500 Post Rd P.O. Box 490 Plover, WI 54467 Ph: 800-434-5224 *www.robertsirrigation.net*

Trickl-eez Company 4266 Hollywood Rd. St. Joseph, MI 49085 Ph: 800-874-2553 *www.trickl-eez.com*

Spring Brook Supply 11291 Lakewood Blvd. Holland, MI 49424 Ph: 616-396-1956 *www.springbrookirrigation.com*

Further Information

Designing A Drip/Trickle Irrigation System: Part 1&2 — Water Needs, Emitters, and Management. Albert R. Jarrett Professor of Agricultural Engineering http://pubs.cas.psu.edu/freepubs/pdfs/F180.pdf http://pubs.cas.psu.edu/freepubs/pdfs/F181.pdf

Fertigation of Apple Trees in Humid Climates. Terence Robinson and Warren Stiles. 2004. New York Fruit Quarterly. Vol.12 No.1. *http://www.nyshs.org/pdf/fq/2004-Volume-12/Vol-12-No-1/Fertigation-of-Apple-Trees-in-Humid-Climates.pdf*

Using Irrigation Water Tests to Predict and Prevent Clogging of Drip Irrigation Systems. Storlie, C. 1995. Rutgers Cooperative Research and Extension Fact Sheet, FS793. *http://njaes.rutgers.edu/pubs/publication.asp?pid=FS793*

Treating Drip Irrigation Systems with Chlorine. Storlie, C. 1997. Rutgers Cooperative Research and Extension Fact Sheet, FS795. *http://njaes.rutgers.edu/pubs/publication.asp?pid=FS795*

How to Reduce Clogging Problems in Fertigation. Guodong Liu and Gene McAvoy. 2012. Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, HS1202 *http://edis.ifas.ufl.edu/hs1202*

